
ОАО «ОНИИП»

ПРОГНОЗИРОВАНИЕ КРИТИЧЕСКОЙ ЧАСТОТЫ СЛОЯ F2

научный сотрудник НИЛ-232 Васенина А.А.

РАСПРЕДЕЛЕНИЕ ИОНИЗАЦИИ

МОДЕЛИРОВАНИЕ КРИТИЧЕСКОЙ ЧАСТОТЫ СЛОЯ F2

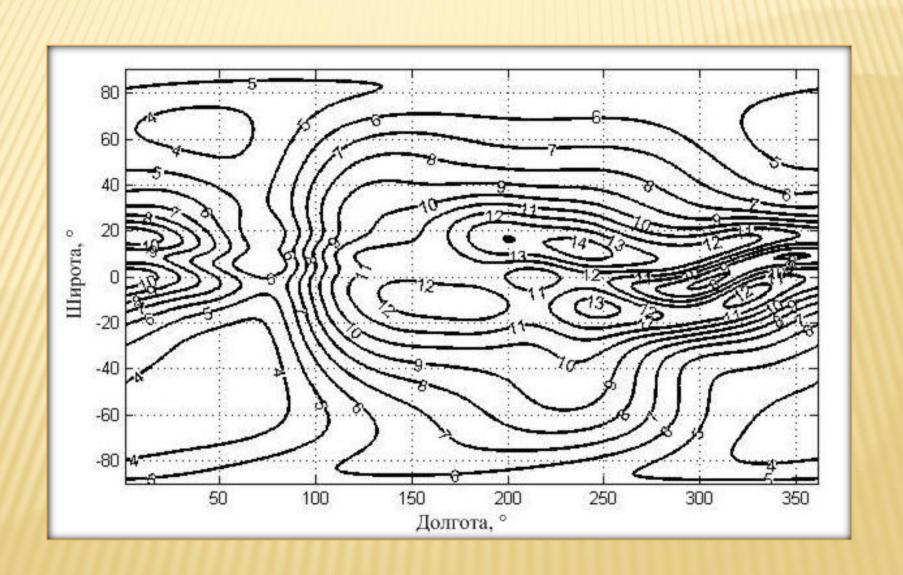
Расчет проводится с применением разложения эмпирической базы данных во временные ряды Фурье:

$$f_0 F2(\lambda, \theta, T) = a_0(\lambda, \theta) + \sum_{j=1}^{H} \left[a_j(\lambda, \theta) \cos(jT) + b_j(\lambda, \theta) \sin(jT) \right]$$

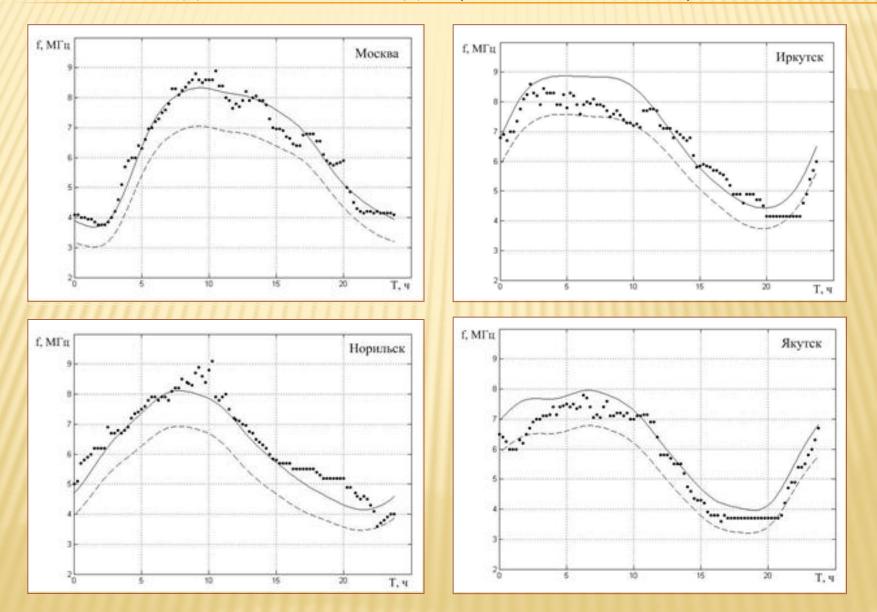
Значения коэффициентов Фурье меняются в зависимости от географических координат и представлены в виде рядов:

$$a_{j}(\lambda,\theta) = \sum_{k=0}^{K} U_{2j,k} G_{k}(\lambda,\theta), \qquad j = 0,1,2,..., H$$
$$b_{j}(\lambda,\theta) = \sum_{k=0}^{K} U_{2j-1,k} G_{k}(\lambda,\theta), \qquad j = 1,2,..., H$$

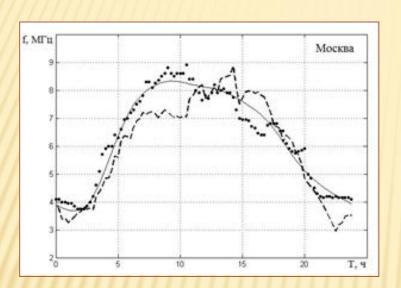
$$b_{j}(\lambda,\theta) = \sum_{k=0}^{K} U_{2j-1,k} G_{k}(\lambda,\theta), \qquad j = 1,2,...,H$$

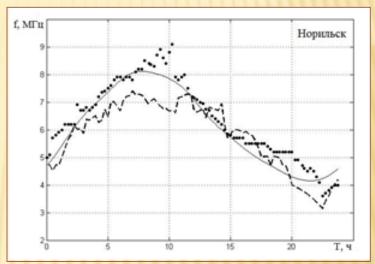

Сферические функции Лежандра соответствуют каждому коэффициенту Фурье:

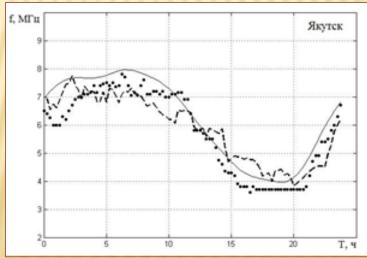
$$G_k(\lambda,\theta) = \sin^{q_i} X \cos^i \lambda \sin i\theta$$


Модифицированное магнитное наклонение:

$$X = \arctan\left(\frac{I}{\sqrt{\cos \lambda}}\right)$$


КАРТА ЗНАЧЕНИЙ КРИТИЧЕСКОЙ ЧАСТОТЫ СЛОЯ F2 СЕНТЯБРЬ 2011, UTC=00, R=100




СУТОЧНЫЕ ИЗМЕНЕНИЯ КРИТИЧЕСКОЙ ЧАСТОТЫ СЛОЯ F2 ПО РЕЗУЛЬТАТАМ МОДЕЛИРОВАНИЯ (СПЛОШНАЯ ЛИНИЯ), МОДЕЛИРОВАНИЯ С ИСПОЛЬЗОВАНИЕМ АДАПТИВНОГО ПАРАМЕТРА (ПУНКТИРНАЯ ЛИНИЯ) И ПО ДАННЫМ ИОНОЗОНДОВ (ТОЧЕЧНЫЙ ГРАФИК)

СУТОЧНЫЕ ИЗМЕНЕНИЯ КРИТИЧЕСКОЙ ЧАСТОТЫ СЛОЯ F2 ПО РЕЗУЛЬТАТАМ МОДЕЛИРОВАНИЯ С УЧЕТОМ АДАПТИВНОГО ПАРАМЕТРА (СПЛОШНАЯ ЛИНИЯ), МОДЕЛИРОВАНИЯ С УЧЕТОМ ДАННЫХ СТАНЦИИ ВЗ (ПУНКТИРНАЯ ЛИНИЯ) И ПО ДАННЫМ ИОНОЗОНДОВ (ТОЧЕЧНЫЙ ГРАФИК)

СРАВНЕНИЕ РЕЗУЛЬТАТОВ

$$\left\langle \Delta f_0 F2 \right\rangle = \frac{\sum_{1}^{N} \left(f_0 F2 \text{_model} - f_0 F2 \text{_ion} \right)}{N}$$
 - среднее значение погрешности

$$\sigma = \sqrt{\frac{\sum_{1}^{N} (f_0 F2 \text{ model - } f_0 F2 \text{ ion})^2}{N}}$$

среднеквадратическое отклонение

Местоположение	Моделирование		Моделирование с адаптацией		Моделирование с учетом данных В3	
	$\left<\Delta f_0 F 2\right>$, МГц	σ , М Γ ц	$\left<\Delta f_0 F 2\right>$, МГц	σ , М Γ ц	$\left \left<\Delta f_0 F 2\right>$, МГц	σ , М Γ ц
Москва	-1.01	1,08	-0.02	0.33	-0.32	0.82
Иркутск	-0,60	0,73	0.39	0.67		-
Норильск	-1,26	1,32	0.28	0.45	0.58	0.84
Якутск	-0,53	0,64	0.46	0.57	0.11	0.61

БЛАГОДАРЮ ЗА ВНИМАНИЕ